
Performance Modeling of Algebraic Multigrid on
Blue Gene/Q: Lessons Learned

Hormozd Gahvari, William Gropp
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{gahvari,wgropp}@illinois.edu

Kirk E. Jordan
IBM TJ Watson Research Center

Cambridge, MA 02142
kjordan@us.ibm.com

Martin Schulz, Ulrike Meier Yang
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{schulzm,umyang}@llnl.gov

Abstract—The IBM Blue Gene/Q represents a large step in
the evolution of massively parallel machines. It features 16-core
compute nodes, with additional parallelism in the form of four
simultaneous hardware threads per core, connected together by
a five-dimensional torus network. Machines are being built with
core counts in the hundreds of thousands, with the largest,
Sequoia, featuring over 1.5 million cores. In this paper, we
develop a performance model for the solve cycle of algebraic
multigrid on Blue Gene/Q to help us understand the issues this
popular linear solver for large, sparse linear systems faces on
this architecture. We validate the model on a Blue Gene/Q at
IBM, and conclude with a discussion of the implications of our
results.

I. INTRODUCTION

Since the end of the rise in single-core speeds, new ma-
chines have turned to increased parallelism for improvements
in performance. The first big step of this trend was multicore
processors, and increasing numbers of cores per chip and per
node. The IBM Blue Gene/Q takes these multicore processors
and adds another source of parallelism to the mix in the form
of simultaneous multithreading (SMT), which allows each core
to run multiple hardware threads at the same time.

Its new features and many installations make Blue Gene/Q
an important machine. A number of places have turned to it to
provide their supercomputing needs. In the June 2012 Top 500
supercomputer list [1], thirteen of the top 50 machines, four
of the top 10 machines, and two of the top 3 machines are
Blue Gene/Qs. The top-ranked machine, the Sequoia system
at Lawrence Livermore National Laboratory, features over
1.5 million cores, and will be used to run many large-scale
simulations [2].

A natural question to ask with the emergence of a new ma-
chine is how well applications will run on it, and what changes
need to be made to them to ensure that they do run well on it.
We are in particular interested in algebraic multigrid (AMG),
a popular solver for large, sparse linear systems of equations
that finds many uses in scientific and engineering simulations.
AMG scaled very well on the IBM Blue Gene/L [3] and
Blue Gene/P [4] platforms, but has since run into problems
on emerging architectures with multicore nodes [5], [6]. To
aid us in adapting AMG to Blue Gene/Q, we develop in this
paper a performance model for the AMG solve cycle on Blue

Gene/Q, and use it to analyze observed performance on a
prototype system, highlighting issues that need to be addressed
when adapting AMG to Blue Gene/Q. Our model builds upon
our past work that featured performance models for AMG
programmed entirely in a distributed memory model [7] and
for AMG programmed in hybrid MPI/OpenMP [8], extending
it to cover simultaneous multithreading.

The rest of the paper proceeds as follows. Section II
talks about the Blue Gene/Q architecture in more detail and
describes the machine on which we ran our experiments. Sec-
tion III describes AMG and the implementation of it we used
in our experiments. Section IV introduces our performance
model, beginning with an overview of the model we developed
in our past work and then detailing the extensions we make
to cover simultaneous multithreading. Section V presents the
results of our validation experiments, and is followed by our
conclusions in Section VI.

II. BLUE GENE/Q

Blue Gene/Q, the latest machine in IBM’s highly success-
ful Blue Gene line of supercomputers, represents a notable
departure from its predecessors in many ways. The principle
of connecting together cores slower than those of competing
machines with a good interconnect to obtain efficient, scalable
performance remains. However, while Blue Gene/L and Blue
Gene/P had small per-node core counts (2 and 4, respectively),
Blue Gene/Q features 16 cores per node, and each core can
run four hardware threads simultaneously, allowing for up to
64-way per-node parallelism. These threads can be directly
accessed by the programmer through common distributed-
memory and shared-memory parallel programming models.
The interconnect has also changed. Blue Gene/L and Blue
Gene/P featured three-dimensional torus interconnects. This
has been changed to a five-dimensional torus in Blue Gene/Q.
The separate network for handling collective communication
that existed in prior Blue Gene machines has been removed;
collective functions are now also handled by the torus. More
information about the Blue Gene/Q compute chip can be found
in [9], and more information about the interconnect can be
found in [10].

In this paper, we ran our experiments on Grotius, a Blue
Gene/Q located at the IBM TJ Watson Research Center in

!"#$%&'()*"
! !"+",#&,-).*"&/0.12*3&
! 4"516"&16#".%-+)#1-67&&&&'89:& 7&9;<7=7>
! 4"516"&."*#.1,#1-67&&?89:&&;&8'89::@
! 4"516"&,-).*"A0.12&-%".)#-.*7&B89C<:&&;&?89: B89:&'89:

!-+D"&'()*"&8+"D"+&9:
!9--#(&B89: $9 ;&59& !9--#(&B89: $9 ;&59

E-9%$#"&.9 ;&59&A B89: $9 E-..",#&$9&&!&$9 C&"9
?"*#.1,#&.9C< ;&?89: .9 F6#".%-+)#"&"9 ;&'89: "9C<

!-+D"&B89C<: "9C< ;&.9C<

Fig. 1. AMG building blocks. Originally from [7], c©2011 ACM, Inc.
Included here by permission.

Yorktown Heights, NY. At the time of our experiments,
Grotius was a one rack system, but it has since been expanded
to two racks. There are 1024 nodes in a rack, with one 16
core processor per node, for a total of 16,384 cores per rack.
The SMT capabilities allow for up to 65,536 parallel tasks to
run at the same time. Each processor has a clock rate of 1.6
GHz. The hardware bandwidth between nodes is 40 GB/s. All
experiments use IBM’s compiler, and the MPI implementation
is an IBM-derived version of MPICH2.

III. ALGEBRAIC MULTIGRID

Multigrid (MG) linear solvers are particularly well-suited to
parallel computing because their computational cost is linearly
dependent on the problem size. This optimal property, also
referred to as algorithmic scalability, means that proportionally
increasing both the problem size and the number of processors
(i.e., weak scaling) results in a roughly constant number of
iterations to solution. Therefore, MG methods are popular for
large-scale scientific computing and will play a critical role in
enabling simulation codes to perform well on emerging ma-
chines such as Sequoia. Hence, our interest in the performance
of AMG on Blue Gene/Q.

MG’s low computational cost results from restricting the
original linear system to increasingly coarser grids, which
require fewer operations than the fine grid. An approximate
solution is determined on the coarsest grid, typically with a
direct solver, and is then interpolated back up to the finest grid.
On each grid level an inexpensive smoother (e.g., a simple
iterative method like Gauss-Seidel) is applied. The process of
starting on the fine grid, restricting to the coarse grid, and
interpolating back to fine grid again is called a V-cycle, which
corresponds to a single MG iteration.

AMG is a special MG method, which does not require
geometric grid information for the solution of a sparse linear
system A(0)u = f (0).

AMG consists of two phases: setup and solve, see Figure
1. The primary computational kernels in the setup phase
are the selection of the variables for the coarser grids, the
definition of the interpolation (P (m)) and restriction (R(m))

operators, and the creation of the coarse grid matrix operator
A(m+1) for m = 0, 1, ..., L − 1, where L is the number
of levels. The variables for the (m + 1)th level as well as
the entries in P (m) and R(m) are determined by making
use of the coefficients of A(m). These algorithms can be
quite complicated. For our experiments, we use the parallel
AMG code BoomerAMG in the hypre software library. We
use HMIS coarsening [11] with extended+i interpolation [12]
truncated to at most 4 coefficients per row and aggressive
coarsening with multipass interpolation [13] on the finest level.
The coarse grid operator is constructed via a triple matrix
product, which, particularly for unstructured problems, leads
to increasing matrix density and with it a larger number of
neighbor processes and increased communication complexity.
The primary computational kernels in the solve phase are
the matrix-vector multiplication (MatVec) and the smoothing
operator, which for our experiments is hybrid Gauss-Seidel.
Hybrid Gauss-Seidel uses a sequential Gauss-Seidel algorithm
locally within each process, with delayed updates across
processes.

Sparse matrices in BoomerAMG are stored in the ParCSR
matrix data structure, in which the matrix A is partitioned
by rows into matrices Ak, k = 0, . . . , p − 1, where p is the
number of MPI processes. Ak is stored locally as two matrices
in sequential CSR (compressed sparse row) format, Dk and
Ok. Dk contains all entries in Ak whose column indices
point to rows stored on process k. Ok contains the remaining
entries, which have column indices that point to rows stored
on other processes. Matrix-vector multiplication Ax involves
computing Akx = Dkx

D+Okx
O on each process, where xD

is the portion of x stored locally and xO is the portion that
needs to be sent by other processes. More detail can be found
in [14]. OpenMP parallelization is done within MPI tasks
using parallel for constructs at the loop level. These
spawn a number of threads that each execute a portion of the
loop being parallelized. Static scheduling is used, which means
that the work is divided equally among the threads before the
loop starts. The parallelized loops are the ones that perform
smoother application and matrix-vector multiplciation.

IV. PERFORMANCE MODEL

Here, we present a performance model for the AMG solve
cycle on Blue Gene/Q. The model is based on a model we
previously developed [7], [8], with an addition to take into
account the simultaneous multithreading on Blue Gene/Q. We
first present the original model, followed by the modifications
to take SMT into account.

A. Original Model

Our model is based on a simple latency-bandwidth model
for communication. The time to send a message consisting of
n double-precision floating-point values is given by

Tsend = α+ nβ,

where α is the communication start-up time and β is the
time to send one double-precision floating-point value. The α

serial AMG!
coarse solve!

all-gather!
at level l!

smooth,!
form residual!

restrict to!
level i+1!

prolong to!
level i-1!

smooth!

Fig. 2. Component operations in an AMG solve cycle.

term covers both the software overhead and latency involved
in message passing, and the β term is tied to the available
bandwidth. To handle computation, we multiply the number
of floating-point operations by a computation rate, which we
allow to vary by level, letting ti be the time per floating-point
operation at level i. The reason for this is that the operator sizes
vary by level and the operations involved in an AMG cycle are
either matrix-vector multiplication or a very similar operation
(smoothing). A past study [15] found that the computation
rate for this operation varies depending on the dimensions and
number of nonzero entries in the matrix. The other parameters
we use are:

• P – total number of cores
• Ci – number of unknowns on grid level i
• si, ŝi average number of nonzero entries per row in the

level i solve and interpolation operators, respectively
• pi, p̂i – maximum number of sends over all processes in

the level i solve and interpolation operators, respectively
• ni, n̂i – maximum number of elements sent over all

processes in the level i solve and interpolation operators,
respectively

There is no separate mention of the restriction operator here
because in our experiments, it is the transpose of the interpola-
tion operator. We assume one smoothing step before restriction
and one smoothing step after interpolation, which is the default
in BoomerAMG.

We break the solve cycle into a series of individual steps.
The total time spent in a cycle with L levels is given by

TAMG
solve =

L−1∑
i=0

T isolve,

where T isolve is the time spent in the cycle at level i. This in
turn splits into three operations, diagrammed in Figure 2:

T isolve = T ismooth + T irestrict + T iinterp

T ismooth is the time spent smoothing on level i, T irestrict is the
time spent restricting from level i to level i + 1, and T iinterp
is the time spent interpolating from level i to level i− 1.

We now consider the individual steps. At level i, we have to
run a smoother sweep, form the residual, and restrict it to level
i+1 if i is not the coarsest level. When the computation returns
to that level, there will be another smoother sweep followed

by interpolation to level i − 1 if i is not the finest level. We
model these operations as matrix-vector multiplication using
the appropriate operator, with two floating-point operations per
matrix entry. The smoothing time at level i is

T ismooth = 6
Ci
P
siti + 3(piα+ niβ).

The time spent restricting from level i to level i+ 1 is given
by

T irestrict =

{
2Ci+1

P ŝiti + p̂iα+ n̂iβ if i < L− 1
0 if i = L− 1.

The time spent interpolating from level i to level i−1 is given
by

T iinterp =

{
0 if i = 0

2Ci−1

P ŝi−1ti + p̂i−1α+ n̂i−1β if i > 0.

To this model, we now add terms and penalties to cover
communication distance, limited bandwidth, and network con-
tention, issues we have observed on actual machines. To cover
communication distance, we add a γ term that represents the
delay per hop. The corresponding change to the model is
replacement of α with

α(h) = α(hm) + (h− hm)γ,

where h is the number of hops a message travels, and hm is
the smallest possible number of hops a message can travel in
the network. To account for routing delays and possible long
hops across a machine room, we assume h is the diameter of
the network partition allocated during runtime. hm depends
on the network topology; in the case of the torus network of
Blue Gene/Q, hm = 1.

Limited bandwidth is also an issue. Under ideal conditions,
the peak hardware bandwidth is rarely achieved in message
passing, and the achievable bandwidth is itself rarely reached
under the non-ideal conditions under which applications usu-
ally run. We take this into account by multiplying β by Bmax

B ,
where Bmax is the peak aggregate per-node bandwidth in
hardware, and B is the measured bandwidth corresponding
to β. For β reflecting the cost to send one double-precision
floating-point value, B = 8

β .
There is also network contention. The most basic manifesta-

tion of this is reduced bandwidth from messages sharing links.
If m is the number of messages, and l is the number of links,
we augment the previously defined penalty to β as follows.
Instead of multiplying by Bmax

B as before, we multiply β by
the sum Bmax

B +m
l . For the 5D torus of Blue Gene/Q, l = 5N ,

where N is the number of nodes in the job’s partition.
Additional contention penalties to the α and γ terms were

derived in [7] to deal with issues resulting from delays in
messages accessing the interconnect and traveling through
switches. However, we do not use these in our model for Blue
Gene/Q, as we do not expect there to be issues arising from
this based on our experiences with other machines with strong
interconnects, such as the Blue Gene/P [7] and Cray XK6 [8]
machines we evaluated in our past work.

TABLE I
PENALTIES TO COMPUTATION RATE ti TO TAKE INTO ACCOUNT HYBRID MPI/OPENMP AND SIMULTANEOUS MULTITHREADING. ti IS MULTIPLIED BY

THE PENALTY GIVEN IN THE TABLE.

nMPI 1 SMT 2 SMT 3 SMT 4 SMT
1 POMP(16) POMP(32) POMP(48) POMP(64)
2 POMP(8) POMP(16)PSMT(2) POMP(24)PSMT(2) POMP(32)PSMT(2)
4 POMP(4) POMP(8)PSMT(2) POMP(12)PSMT(3) POMP(16)PSMT(4)
8 POMP(2) POMP(4)PSMT(2) POMP(6)PSMT(3) POMP(8)PSMT(4)

16 1 POMP(2)PSMT(2) POMP(3)PSMT(3) POMP(4)PSMT(4)
32 – PSMT(2) – POMP(2)PSMT(4)
64 – – – PSMT(4)

Performance Model!

•  !"#$%&'#&("')*+'#%,#-./0(*&1'2&*3-
45  6711(2%#.872-/%*&.2#'3-.//-81')+'")$7+-&'"1-9-
:5  ;'&<7"=-#72&'28723-1(>8+>?-@-A?-21*B*C2>%2=*-
D5  E%1(>&.2'7(*-1(>8&$"'./%2B3->%1%&'/-A?-/(.>-%2*&"(#872-

%**('F-'G'2-<%&$-(+-&7-H-*%1(>&.2'7(*-1(>8+>?).//*C#7"'-

I4- I:- JK- E-

I4- I:- JK- E-

:-%2*&"(#872*-%2-LCH-&$'-81'-
-
E+''/(+->%1%&'/-&7-45MN-O7"-:-EPQF-45RSN-O7"-H-EPQ-
-
!/0(*&-#71+(&.872-".&'-.##7"/%2B>?-

•  T+'2PK-17/'>-%*-%2-+"7B"'**U-<'-#72*%/'"-PKV)72>?-
#.*'-$'"'-

W-II;I)KXYE)LRDDR:-

Fig. 3. Dual instruction issue for sparse matrix-vector multiply operations.

To cover hybrid MPI/OpenMP, we penalize ti to take into
account limited memory bandwidth resulting from threads
contending when accessing memory shared by multiple cores.
If bj is the memory bandwidth per thread when running j
OpenMP threads, then we multiply ti by b1

bj
. In [8], there was

also a penalty to take into account threads migrating to cores
on different sockets; we do not apply this penalty on Blue
Gene/Q as each node has only one processor.

B. Additions to Cover Simultaneous Multithreading

The simultaneous multithreading feature on Blue Gene/Q
allows for up to four threads to run at the same time. However,
while four threads can perform floating-point operations at the
same time, four instructions cannot be running at the same
time. Instruction issue is only two-way [9], so this limits the
achievable parallelism, especially for operations like sparse
matrix-vector multiply that are dominated by fetching data
from memory.

Figure 3 diagrams dual issue for sparse matrix-vector mul-
tiply, and we base our SMT model on this. We treat each
MatVec as two loads, a single floating-point instruction (fused
multiply-add), and a store. The instructions do not issue
simultaneously, so instead of two MatVecs issuing in the same
number of cycles as one, we have two MatVecs issuing in 5

4 of
the cycles. The speedup from using two SMT threads instead
of one is thus capped at 1.6x. The penalty to ti is multiplication
by 2

1.6 = 1.25.
We use a similar analysis for a greater number of SMT

threads, for which we find that the possible speedup is not
that much greater. When using 3 SMT threads, 6 MatVecs can
be issued in 13 cycles instead of 24, leading to a maximum
speedup of about 1.85x. The corresponding penalty to ti is
multiplication by 3·13

24 = 1.625. When using 4 SMT threads,
4 MatVecs can be issued in 9 cycles instead of 16, leading
to a maximum speedup of about 1.78x. The corresponding
penalty to ti is multiplication 4·9

16 = 2.25. The corresponding
instruction issue is diagrammed in Figure 4.

Fig. 4. Instruction issue for up to 6 MatVecs. Each MatVec is colored with
a different pattern.

In the MPI only case, we apply these penalties as derived.
When adding OpenMP, we have to be careful not to double
penalize. This would occur if we are using more than 16
OpenMP threads per node. Measured memory bandwidths
when using this many threads would then implicitly contain
a penalty for SMT. To avoid double penalizing, we apply the
SMT penalty in the hybrid case as follows. Let PSMT(t) be
the SMT penalty given above when using t SMT threads, and
let POMP(t) be the memory bandwidth penalty b1

bt
when using

t OpenMP threads. If nSMT is the number of SMT threads in
use, nMPI is the number of MPI tasks per node, and nOMP

is the number of OpenMP threads per node, then we multiply
the measured ti by PSMT (min{nMPI, nSMT})POMP(nOMP),
which takes SMT and OpenMP into account simultaneously.
For clarity, a summary of the penalties to ti for both OpenMP
and SMT is given in Table I.

V. MODEL VALIDATION

A. Experimental Setup

We ran 10 AMG solve cycles and measured the amount of
time spent in each level, dividing by 10 to get timings for an
average solve cycle. Since AMG is used in iterative methods,
involving several cycles at least, this measures the time we
would expect to see spent in AMG per iteration. As a test
problem, we used a 3D 7-point Laplace problem on a cube,
with 50× 50× 25 points per core. The mapping of MPI tasks
per node was the default block mapping, in which each node
is filled with MPI tasks before moving onto the next one.

B. Machine Parameters

1) Communication and Computation: Parameters for the
communication and computation terms are given in Table II.
We determine α and β from the best latency and bandwidth
measurements taken by the latency-bandwidth benchmark in
the HPC Challenge suite [16]. The benchmark used 8 byte
messages to obtain its latency measurements and 2 MB
messages to obtain its bandwidth measurements. We determine

TABLE II
MEASURED MACHINE PARAMETERS α, β , γ , AND ti ON GROTIUS.

Parameter Value
α 3.15 µs
β 2.19 ns
γ 336 ns
t0 13.4 ns
t1 11.4 ns
t2 6.39 ns

TABLE III
MEMORY BANDWIDTH PER THREAD REPORTED BY STREAM TRIAD.

No. Threads Bandwidth
1 thread 4117.8 MB/s
2 threads 4064.1 MB/s
3 threads 4037.7 MB/s
4 threads 4035.2 MB/s
6 threads 3921.1 MB/s
8 threads 3505.4 MB/s

12 threads 2267.0 MB/s
16 threads 1741.3 MB/s
24 threads 1109.5 MB/s
32 threads 874.24 MB/s
48 threads 661.06 MB/s
64 threads 512.39 MB/s

γ by formulating α as a function of the number of hops h in
the performance model:

α(h) = α(1) + γ(h− 1)

We assume α(1) is the best latency reported by the benchmark,
and take the worst latency reported by the benchmark to be

α(D) = α(1) + γ(D − 1),

where D is the diameter of the network. Then

γ =
α(D)− α(1)

D − 1
.

With one exception, we measured the computation rates ti
using a serial sparse matrix-vector multiply benchmark [17]
run simultaneously on all 16 cores of one node to properly
stress the memory system, but without using any of the SMT
capability so as not to duplicate the SMT penalty already in
the model. The exception was t0. The measured value reported
by the benchmark was slower than the corresponding value
for Blue Gene/P (reported in [7]), which has a much slower
processor, so we instead ran our test problem on one node and
measured t0 from the measured time on level 0, assuming all
of it was spent in computation.

2) OpenMP Parameters: We used the STREAM Triad
benchmark [18] to compute the memory bandwidth per thread
when using OpenMP, taking an average of the reported result
over 10 trials. The reported bandwidths are in Table III.

C. Results

Modeled cycle times, measured cycle times, and the cor-
responding accuracies are given in Table V for 128 cores,
Table VI for 1024 cores, and Table VII for 8192 cores. The
results are organized with each row containing timings for
a given number of MPI tasks per node, and each column

TABLE IV
SYNCHRONIZATION OVERHEAD FOR AN OPENMP PARALLEL FOR LOOP

FOR THE GIVEN NUMBER OF THREADS.

No. Threads Overhead
2 threads 4.61 µs
3 threads 6.02 µs
4 threads 6.08 µs
6 threads 6.81 µs
8 threads 7.86 µs
12 threads 9.99 µs
16 threads 12.09 µs
24 threads 18.16 µs
32 threads 22.65 µs
48 threads 33.29 µs
64 threads 47.33 µs

containing timings for a given number of SMT threads per
core. The number of OpenMP threads is not mentioned
explictly, but can be determined by dividing 16x the number
of SMT threads per core by the number of MPI tasks per
node. If this is 1, then no OpenMP is used at all. More detail
is given in Figure 5, which plots modeled and actual times by
level. In these plots, the coarsest level is not shown because
that level is solved using Gaussian elimination rather than
a smoother application, which is what our model assumes.
Operator parameters and communication counts used for the
model are given in Table VIII for 8192 cores for the thread/task
mixes of 1 MPI/64 OpenMP, 8 MPI/8 OpenMP, and 64 MPI/1
OpenMP per node.

The cycle time prediction accuracies are mostly good, either
above 90% or not too far below, when the number of MPI
tasks per node is at least one-eighth of the total number of
parallel tasks per node possible for the given number of SMT
threads in use. When the number of MPI taks per node falls
below this is when the accuracy suffers. Then, the model
overpredicts the runtime on fine grids and underpredicts it on
coarse grids. The overall result is usually an overprediction of
the runtime, except for the 4 SMT case, when it is a substantial
underprediction.

The OpenMP performance itself merits a closer look. It is
very poor, causing serious slowdowns when there are a lot
of threads per node, and using OpenMP never beats config-
urations that use only MPI. Most striking is the performance
degradation on coarse grids when there is only one MPI task
per node. The conventional wisdom from our past work is
that introducing OpenMP improves coarse grid performance
at the cost of fine grid performance [8]. The predictions of
the performance model reflect this. However, if coarse grid
performance is also degraded, then there is something else
going on that the model is not capturing. We have a likely
culprit: synchronization. A measurement we took with an MPI
trace library comparing the results with 64 MPI tasks per node
and 1 MPI task and 64 OpenMP threads per node on 1024
cores revealed that in the former case, the slowest process
spent 34 ms in MPI operations, with 31 ms in MPI_Waitall,
but in the latter case, the slowest process spent 67 ms in
MPI operations, with 66 ms in MPI_Waitall. Using MPI
everywhere, for a total of 4096 MPI ranks on 1024 cores,

0

2

4

6
1

2
4

8
16

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 128 Cores, 1 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1

2
4

8
16

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 1024 Cores, 1 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1

2
4

8
16

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 8192 Cores, 1 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6
1 2 4 8 16 32

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 128 Cores, 2 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1 2 4 8 16 32

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 1024 Cores, 2 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1 2 4 8 16 32

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 8192 Cores, 2 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6
1

2
4

8
16

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 128 Cores, 3 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1

2
4

8
16

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 1024 Cores, 3 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1

2
4

8
16

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 8192 Cores, 3 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6
1 2 4 8 16 32 64

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 128 Cores, 4 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1 2 4 8 16 32 64

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 1024 Cores, 4 SMT

Level

T
im

e
 (

s
)

Actual

Model

0

2

4

6

8
1 2 4 8 16 32 64

10
−4

10
−3

10
−2

10
−1

MPI tasks per node

AMG Cycle Time by Level, 8192 Cores, 4 SMT

Level

T
im

e
 (

s
)

Actual

Model

Fig. 5. Level-by-level model vs. actual cycle times.

TABLE V
MODELED CYCLE TIMES, ACTUAL CYCLE TIMES, AND CYCLE TIME PREDICTION ACCURACIES ON 128 CORES.

Modeled Cycle Times (ms) Actual Cycle Times (ms) Accuracies
1 SMT 2 SMT 3 SMT 4 SMT 1 SMT 2 SMT 3 SMT 4 SMT 1 SMT 2 SMT 3 SMT 4 SMT

1 MPI 117.5 117.1 103.8 100.6 72.2 60.0 71.5 117.8 37.2% 47.1% 54.8% 85.4%
2 MPI 61.7 76.0 79.3 75.7 65.4 49.3 47.9 52.0 94.2% 45.7% 34.4% 54.3%
4 MPI 55.0 41.4 53.2 69.6 64.5 44.9 42.3 43.1 85.2% 92.2% 74.1% 38.3%
8 MPI 55.8 38.0 34.8 39.1 62.5 43.5 40.5 41.5 89.3% 87.4% 85.8% 94.2%

16 MPI 56.6 39.3 35.5 36.6 54.8 42.6 39.4 39.9 96.6% 92.3% 90.2% 91.5%
32 MPI – 40.5 – 37.9 – 38.1 – 39.5 – 93.6% – 96.0%
64 MPI – – – 40.2 – – – 40.0 – – – 99.3%

TABLE VI
MODELED CYCLE TIMES, ACTUAL CYCLE TIMES, AND CYCLE TIME PREDICTION ACCURACIES ON 1024 CORES.

Modeled Cycle Times (ms) Actual Cycle Times (ms) Accuracies
1 SMT 2 SMT 3 SMT 4 SMT 1 SMT 2 SMT 3 SMT 4 SMT 1 SMT 2 SMT 3 SMT 4 SMT

1 MPI 125.9 125.5 112.2 109.0 81.8 73.1 91.0 157.4 46.1% 28.3% 76.7% 69.3%
2 MPI 68.8 83.1 86.4 82.8 73.3 59.1 58.1 63.2 93.8% 59.3% 51.4% 69.0%
4 MPI 60.7 47.1 58.9 75.3 69.6 50.5 48.7 50.5 87.2% 93.3% 78.9% 50.8%
8 MPI 61.0 43.2 40.0 44.3 67.6 49.2 46.8 48.3 90.3% 87.8% 85.3% 91.8%

16 MPI 61.8 44.5 40.6 41.7 59.0 47.6 44.6 45.3 95.4% 93.3% 91.2% 92.0%
32 MPI – 46.1 – 43.5 – 42.9 – 44.4 – 92.4% – 98.0%
64 MPI – – – 46.4 ms – – – 47.4 – – – 98.0%

TABLE VII
MODELED CYCLE TIMES, ACTUAL CYCLE TIMES, AND CYCLE TIME PREDICTION ACCURACIES ON 8192 CORES.

Modeled Cycle Times (ms) Actual Cycle Times (ms) Accuracies
1 SMT 2 SMT 3 SMT 4 SMT 1 SMT 2 SMT 3 SMT 4 SMT 1 SMT 2 SMT 3 SMT 4 SMT

1 MPI 133.2 132.7 119.4 116.2 91.8 85.8 106.7 182.7 55.0% 45.4% 88.0% 63.6%
2 MPI 75.3 89.7 92.9 89.4 86.0 66.5 67.4 72.5 91.6% 65.1% 62.2% 76.7%
4 MPI 67.8 54.3 66.1 82.5 76.5 57.6 55.8 59.3 88.7% 94.1% 81.5% 60.9%
8 MPI 68.1 50.3 47.0 51.4 72.9 54.9 53.1 54.7 93.3% 91.6% 88.5% 93.8%

16 MPI 69.5 52.1 48.3 49.3 64.7 53.1 50.2 51.8 92.6% 98.1% 96.2% 95.2%
32 MPI – 54.2 – 51.6 – 48.9 – 51.2 – 89.2% – 99.3%
64 MPI – – – 55.0 – – – 57.2 – – – 96.2%

should not result in more time spent in MPI operations than
using MPI only between nodes, which only uses a total of
64 MPI ranks. However, the OpenMP synchronization costs
rise noticeably with increasing thread counts on Blue Gene/Q.
Table IV shows the results of a run of the EPCC OpenMP
synchronization benchmark [19] for an OpenMP parallel
for loop. Combining this with the limitations from the dual
instruction issue and waiting for MPI tasks to finish communi-
cating would lead to an unfavorable synchronization scenario
for the case of 64 OpenMP threads per node. Additional data,
plotted in Figure 6, shows level-by-level performance with just
1 MPI task per node and a varying number of OpenMP threads.
Though fine grid performance mostly improves as the number
of threads increases, coarse grid performance actually declines.

The best observed performance in all cases occurred when
using 32 MPI tasks per node, with no OpenMP. This is a
source of disappointment, as it meant BoomerAMG was not
taking advantage of the full parallelism presented to us by
the machine. According to the model, this was inherent to the
application and the architecture – the limited ability of the
dual instruction issue to issue enough simultaneous floating
point operations for the MatVecs and smoother applications
meant that the 3 SMT case resulted in the best predicted
speedup. The results bore this out in that so long as there

were at least 4 MPI tasks per node, the 3 SMT case resulted
in the best performance compared to other numbers of SMT
threads for the same number of MPI tasks. Unfortunately, it
was not possible to test using 24 or 48 MPI tasks per node
(paired with 2 OpenMP threads per task and no OpenMP
threads, respectively), as the Blue Gene/Q scheduler requires
the number of MPI tasks per node to be a power of two. Those
cases might have been superior to 32 MPI tasks per node.

The other noticeable discrepancy between the modeled and
measured results is that the model predicted the best perfor-
mance to occur using 8 MPI tasks per node regardless of the
number of SMT threads used. However, the all-MPI case was
the actual best case except for the 4 SMT case. The explanation
here is the unexpected coarse grid slowdown we saw when
using OpenMP. If this is going to be a recurring problem when
running BoomerAMG on Blue Gene/Q, something will need
to be done to address it; we will discuss this further in our
concluding remarks.

VI. CONCLUSIONS

To better understand the issues faced by algebraic multigrid
on Blue Gene/Q, and how to best adapt it to this new and
important architecture, we developed a performance model
of the AMG solve cycle that took into account all-MPI
performance, hybrid MPI/OpenMP performance, and its most

0 1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Cycle Time by Level, 128 Cores, 1 MPI Task/Node

Level

T
im

e
 (

s
)

N
o
.
T

h
re

a
d
s
/T

a
s
k

1

2

4

8

16

32

64

0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

10
0

Cycle Time by Level, 1024 Cores, 1 MPI Task/Node

Level

T
im

e
 (

s
)

N
o
.
T

h
re

a
d
s
/T

a
s
k

1

2

4

8

16

32

64

0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

10
0

Cycle Time by Level, 8192 Cores, 1 MPI Task/Node

Level

T
im

e
 (

s
)

N
o
.
T

h
re

a
d
s
/T

a
s
k

1

2

4

8

16

32

64

Fig. 6. Level-by-level times with 1 MPI task per node and an increasing number of OpenMP threads on 128, 1024, and 8192 cores.

important feature, simultaneous multithreading. The overall
prediction accuracy was very good for the threading config-
urations which resulted in the best performance. However,
there were significant discrepancies between the modeled and
measured results for configurations that made significant use of
OpenMP. Though we believe this is due to a synchronization
phenomenon the model did not explain, the model nonetheless
is telling us something important even in this case.

The first studies of AMG that involved running Boomer-
AMG in hybrid MPI/OpenMP configurations [5], [6] did not
find the degradation on coarse grids when using OpenMP that
we saw on Blue Gene/Q. There was also some unexpected
and then-unexplained coarse grid degradation observed on
a Cray XK6 when using OpenMP [8], so if this the same
phenomenon, then it is something that will have to be dealt
with on emerging and future machines. As mentioned earlier,
future machines will have many more cores per node, and
with simultaneous multithreading added to the mix, this means
that the available on-node parallelism will soon become truly
massive. Running all MPI tasks per node is not going to work
well on these machines given all the message passing traffic
this generates. We are already seeing this with AMG on Blue
Gene/Q, with 64 MPI tasks per node worse than a number
of other possible MPI/OpenMP mixes in spite of having
the best fine grid performance. The predictions provided by
the performance model hint that successfully incorporating
a threaded programming model like OpenMP is going to be
important in obtaining the best possible performance.

Simultaneous multithreading brings us to another important
point when looking to the future. The way it works on Blue
Gene/Q, with the dual instruction issue, limits the achievable
parallelism when performing sparse matrix-vector multiply
and a similar operation in relaxation. In their pursuit of
increasing levels of parallelism, future machines are likely to
run more simultaneous threads, but as we have seen, their
effectiveness is very much dependent on the interplay between
the architecture and the application. Applications will certainly
have to adapt, though on the other end, the architecture
needs to provide increased parallelism in such a way that the
applications will be fundamentally able to take advantage of
it. The dual instruction issue limitation on Blue Gene/Q and
its adverse impact on sparse matrix-vector multiply highlights

this issue. While applications heavy on this operation will need
to adapt somehow to provide as many simultaneous floating
point operations as they can, the fundamental memory-bound
nature of the operation is such that there is only so much
that can be done at the application level, and designers of
subsequent machines might want to consider providing more
parallelism for moving data from memory in order to allow for
applications dominated by SpMV to better exploit the available
parallelism for computation.

In the future, we will examine what we have observed in
more detail and make use of this information as we adapt
AMG to Blue Gene/Q. In particular, we will run additional
experiments to determine the precise cause of the performance
degradation we have seen when using OpenMP, and move
from there to either adapting the runtime settings, the code, or
both. We will also refine our performance model, and use it
to predict the effectiveness of the adaptations to AMG that we
will be making. We would also like to be able to use the model
to determine the best mix of MPI tasks and OpenMP threads
to run when given a particular problem on a particular number
of cores. As machines get even larger and contain even more
on-node parallelism, the optimal mix of threads and tasks is
going to be more likely to vary with the problem being run,
and being able to determine this automatically would relieve
users of an otherwise time-consuming task.

ACKNOWLEDGEMENTS

This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. De-
partment of Energy award DE-SC0004131, and performed in
part under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344 (LLNL-CONF-580692). It also made use
of the computing resources of the IBM TJ Watson Research
Center. Neither Contractor, DOE, or the U.S. Government, nor
any person acting on their behalf: (a) makes any warranty
or representation, express or implied, with respect to the
information contained in this document; or (b) assumes any
liabilities with respect to the use of, or damages resulting from
the use of any information contained in this document.

REFERENCES

[1] “TOP500 List - June 2012,” http://www.top500.org/list/2012/06.

TABLE VIII
OPERATOR PARAMETERS AND COMMUNICATION COUNTS USED FOR THE MODEL FOR SELECTED MIXES OF MPI TASKS AND OPENMP THREADS PER

NODE ON 8192 CORES. FROM LEFT TO RIGHT, FOR EACH OPERATOR: AVERAGE SENDS PER ACTIVE PROCESS, MAXIMUM SENDS, MAXIMUM ELEMENTS
SENT, NUMBER OF UNKNOWNS, NUMBER OF NONZERO ENTRIES PER ROW, AND ACTIVE PROCESSES.

Solve Operator, 1 MPI/64 OpenMP Interpolation Operator, 1 MPI/64 OpenMP
Lev. Avg Sends Max Sends Elems. Sent Unknowns NNZ/row Active Procs. Avg Sends Max Sends Elems. Sent NNZ/row

0 5.2 6 60000 512000000 7.0 512 14.5 19 7479 2.1
1 15.8 24 16806 40896779 18.0 512 15.0 22 2213 3.3
2 19.2 26 8784 8929521 51.6 512 15.5 24 607 3.6
3 19.7 26 3311 1203569 82.0 512 14.4 22 174 3.6
4 19.8 26 1470 163695 106.9 512 12.3 22 77 3.7
5 34.7 61 668 18132 102.9 512 9.0 28 43 3.6
6 58.5 138 426 2023 82.8 502 4.8 80 90 2.9
7 52.9 132 214 248 57.2 202 2.5 67 85 2.5
8 26.7 32 62 36 29.9 33 1.7 18 18 1.8
9 4.0 4 4 5 5.0 5 – – – –

Solve Operator, 8 MPI/8 OpenMP Interpolation Operator, 8 MPI/8 OpenMP
Lev. Avg Sends Max Sends Elems. Sent Unknowns NNZ/row Active Procs. Avg Sends Max Sends Elems. Sent NNZ/row

0 5.6 6 15000 512000000 7.0 4096 16.0 20 2053 2.1
1 17.8 24 4381 38687050 19.0 4096 16.6 22 616 3.4
2 22.2 26 2437 8005047 53.3 4096 16.5 25 188 3.6
3 22.6 26 1008 938688 83.1 4096 13.8 23 77 3.7
4 38.2 60 552 97778 96.7 4096 9.4 30 48 3.7
5 70.9 148 436 10081 91.0 3818 4.8 74 110 3.5
6 68.4 189 325 1253 73.0 1054 3.2 92 92 3.1
7 53.0 108 108 148 54.1 148 2.7 65 65 2.9
8 20.1 22 22 23 21.1 23 0.6 9 9 0.6
9 1.0 1 1 2 2.0 2 – – – –

Solve Operator, 64 MPI/1 OpenMP Interpolation Operator, 64 MPI/1 OpenMP
Lev. Avg Sends Max Sends Elems. Sent Unknowns NNZ/row Active Procs. Avg Sends Max Sends Elems. Sent NNZ/row

0 5.8 6 3750 512000000 7.0 32768 15.6 20 480 1.9
1 19.0 26 1135 38245922 19.8 32768 16.8 23 272 3.4
2 23.7 26 898 7528827 55.8 32768 16.1 25 101 3.7
3 29.1 43 493 798957 85.6 32768 11.7 26 57 3.7
4 69.4 126 430 77858 96.3 30952 5.1 64 94 3.7
5 85.8 158 326 8507 91.9 7542 3.5 101 122 3.6
6 74.3 180 300 1042 76.9 1009 2.7 128 128 2.8
7 49.2 124 124 145 50.2 145 2.0 62 62 2.1
8 12.8 16 16 17 13.8 17 1.0 10 10 1.2
9 2.0 2 2 3 3.0 3 – – – –

[2] “NNSA’s Sequoia supercomputer ranked as world’s fastest,” https:
//www.llnl.gov/news/newsreleases/2012/Jun/NR-12-06-07.html.

[3] R. D. Falgout, “An introduction to algebraic multigrid,” Computing in
Science and Engineering, vol. 8, pp. 24–33, 2006.

[4] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling
hypre’s Multigrid Solvers to 100,000 Cores,” in High-Performance
Scientific Computing: Algorithms and Applications, M. W. Berry, K. A.
Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, and F. Saied,
Eds. Springer, 2012, pp. 261–279.

[5] A. H. Baker, M. Schulz, and U. M. Yang, “On the Performance of an
Algebraic Multigrid Solver on Multicore Clusters,” in VECPAR’10: 9th
International Meeting on High Performance Computing for Computa-
tional Science, Berkeley, CA, June 2010.

[6] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, “Challenges of
Scaling Algebraic Multigrid across Modern Multicore Architectures,” in
25th IEEE Parallel and Distributed Processing Symposium, Anchorage,
AK, May 2011.

[7] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan,
and W. Gropp, “Modeling the Performance of an Algebraic Multigrid
Cycle on HPC Platforms,” in 25th ACM International Conference on
Supercomputing, Tucson, AZ, June 2011.

[8] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang,
“Modeling the Performance of an Algebraic Multigrid Cycle on HPC
Platforms Using Hybrid MPI/OpenMP,” in 41st International Confer-
ence on Parallel Processing, Pittsburgh, PA, September 2012.

[9] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, P. A. Boyle,
N. H. Christ, C. Kim, D. L. Satterfield, K. Sugavanam, P. W. Coteus,
P. Heidelberger, M. A. Blumrich, R. W. Wisniewski, A. Gara, and G. L.
Chiu, “The IBM Blue Gene/Q Compute Chip,” IEEE Micro, vol. 32,
pp. 48–60, 2012.

[10] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and J. J.
Parker, “The IBM Blue Gene/Q Interconnection Network and Message
Unit,” in Supercomputing 2011, Seattle, WA, November 2011.

[11] H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity in
parallel algebraic multigrid preconditioners,” SIAM Journal on Matrix
Analysis and Applications, vol. 27, pp. 1019–1039, 2006.

[12] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, “Distance-
two interpolation for parallel algebraic multigrid,” Numerical Linear
Algebra With Applications, vol. 15, pp. 115–139, April 2008.

[13] U. M. Yang, “On long-range interpolation operators for aggressive
coarsening,” Numerical Linear Algebra With Applications, vol. 17, pp.
453–472, April 2010.

[14] R. D. Falgout, J. E. Jones, and U. M. Yang, “Pursuing Scalability
for hypre’s Conceptual Interfaces,” ACM Transactions on Mathematical
Software, vol. 31, pp. 326–350, September 2005.

[15] H. Gahvari, “Benchmarking Sparse Matrix-Vector Multiply,” Master’s
thesis, University of California, Berkeley, December 2006.

[16] J. Dongarra and P. Luszczek, “Introduction to the HPCChallenge Bench-
mark Suite,” University of Tennessee, Knoxville, Tech. Rep. ICL-UT-
05-01, March 2005.

[17] H. Gahvari, M. Hoemmen, J. Demmel, and K. Yelick, “Benchmarking
Sparse Matrix-Vector Multiply in Five Minutes,” in SPEC Benchmark
Workshop 2007, Austin, TX, January 2007.

[18] J. D. McCalpin, “Sustainable Memory Bandwidth in Current High Per-
formance Computers,” Advanced Systems Division, Silicon Graphics,
Inc., Tech. Rep., 1995.

[19] J. M. Bull, “Measuring Synchronisation and Scheduling Overheads in
OpenMP,” in First European Workshop on OpenMP, Lund, Sweden,
October 1999.

